Tutti sanno che i terremoti non si possono prevedere. Direi che dopo il tragico terremoto de L'Aquila, il fatto è diventato paradigmatico, ed è stato oggetto di lunghe disquisizioni e discussioni. Se chiedete alla Sora Lella: "I terremoti si possono prevedere ?" risponderà "no".
I terremoti non si possono prevedere.
Però la nostra normativa tecnica per le costruzioni NTC 2008 (e temo anche la successiva minacciata NTC 2015), nelle parti relative alla determinazione del terremoto di progetto è basata sul concetto di periodo di ritorno del sisma.
L'idea che il terremoto ritorni con un certo "periodo" è molto comoda per mettere in piedi una finzione numerica (detta PSHA, Probabilistic Seismic Hazard Assessment), ma fa a pugni con l'idea che il terremoto non si possa prevedere.
Il metodo numerico che sta dietro PSHA, e le nostre norme, suppone che a ogni intensità di sisma corrisponda un periodo di ritorno, e che docilmente a un periodo di ritorno corrisponda una certa probabilità. Non sto a tediare con considerazioni tecniche, a questo link si trovano gli approfondimenti (vedi anche la nota in calce).
Il metodo funzionerebbe così: 1) si fissa la probabilità del sisma di progetto sulla base di considerazioni di opportunità sociale e politica. 2) Si determina come giocando ai dadi che frequenza annuale ha questo terremoto per avere quella probabilità. 3) Dalla frequenza annuale si determina il periodo di ritorno. 4) Dal periodo di ritorno, con altre fortunose manipolazioni di cui dirò ancora in un altro post, si calcola la intensità del sisma corrispondente, da usare nei calcoli.
Il metodo funzionerebbe così: 1) si fissa la probabilità del sisma di progetto sulla base di considerazioni di opportunità sociale e politica. 2) Si determina come giocando ai dadi che frequenza annuale ha questo terremoto per avere quella probabilità. 3) Dalla frequenza annuale si determina il periodo di ritorno. 4) Dal periodo di ritorno, con altre fortunose manipolazioni di cui dirò ancora in un altro post, si calcola la intensità del sisma corrispondente, da usare nei calcoli.
Alla base del metodo c'è proprio questa idea balzana, che il terremoto X ritorni in ogni luogo dopo un certo esatto numero di anni (esatto con tre o quattro cifre). A dire il vero, loro dicono "in media", ma se il fattaccio si verifica ogni 475 anni (o più) la "media" diventa temeraria. E poi, se la media è incerta, i loro risultati sono invece certi, certissimi, hanno tre o quattro cifre.
La vera domanda non è come si possa mettere in piedi un sistema tanto palesemente errato. Le illusioni di validità sono ben note ai cognitivisti. La vera domanda è: ma come fanno a crederci migliaia di ingegneri?
La mia risposta è che non ci credono, ma sono obbligati a bersi questa cosa che non è per legge.
_______________
Nota
In sostanza, se voglio che in 50 anni la probabilità di un sisma di intensità X sia "solo" del 10%, la probabilità di non sisma deve essere del 90%, o 0.9.
50 eventi indipendenti tutti con la stessa probabilità P si verificano con una probabilità P elevato alla 50 (proprio come fare tre volte 4 lanciando un dado ha probabilità (1/6) elevato alla terza).
Il numero che elevato alla 50 dà 0.9 è P=0.9979: è la probabilità anunale di NON sisma. Quindi ogni anno c'è la probabilità di (1-P)=(1-0.9979) = 0.0021 che ci sia il sisma. E siccome il terremoto è un autobus di linea il suo periodo di ritorno è 1/ 0.0021 ANNI, ovvero 475 anni, circa. Poi, con altri sistemi, si vede in ogni luogo che intensità corrisponde a questo periodo di ritorno: tanto più tempo ci mette a ritornare, tanto più sarà forte il terremoto.
Uno potrebbe dire. Ma io voglio una probabilità molto più bassa per il sisma di progetto, non che capiti con il 10% di probabilità in 50 anni, ma solo con lo 0.001 (un per mille)! Ma questo la norma non lo consente. Infatti il "periodo di ritorno" sarebbe 49000 anni circa, e il normatore dice che... non abbiamo i dati.
In realtà, l'esperimento mostra che il metodo è sbagliato. Se volessimo le probabilità come piacciono a noi, le severità calcolate dei sismi sarebbero assurde, e le chiese verrebbero scagliate in alto come razzi.
In conclusione: le probabilità non le decidiamo noi, ma le decide il metodo. E' tutta una colossale mistificazione.
Nessun commento:
Posta un commento